Imaging tortuosity: the potential utility of acoustic angiography in cancer detection and tumor assessment
نویسنده
چکیده
The morphology and structure of the vasculature associated with malignant tumors has long been observed to be chaotic and unusual compared with that of healthy tissues. In tumors, vessel diameters and branching patterns appear random, and the actual trajectories charted through the 3D tumor volume are often tortuous [1,2]. These morphological abnormalities are hypothesized to be a result of a number of complicated physiological effects occurring in parallel, such as tumor cells’ high metabolic demand and their unusual microenvironment (hypoxic, acidic and so on). These factors contribute to a heightened level of angiogenic activity in and around the tumor, which becomes a self-amplifying cycle when the newly formed vessels fail to supply the tumor cells’ insatiable appetite for nutrients [3]. The heightened angiogenic activity also causes the basement membrane and support structure of the vessels to break down. Additionally, the poor organization of the vessel network results in an increase in pressure within the vessels, which is further exacerbated by the absence of lymphatic drainage from the tumor stroma. Of interest from a cancer screening perspective, tumor-associated vascular irregularities can extend beyond the margins of a lesion, as angiogenic growth factors promoted by tumor cells can influence the morphologies of even major vessels in the vicinity of tumors [4]. Additionally, cancer-associated tortuous vessel morphologies have been observed in animal models much sooner than the arrival of a palpable mass. For example, vascular remodeling has been observed via microscopy and window chamber models when only tens to hundreds of tumor cells are present within an otherwise healthy tissue volume [5].
منابع مشابه
Imaging Cellular Proliferation in Prostate Cancer with Positron Emission Tomography
Prostate cancer remains a major public health problem worldwide. Imaging plays an important role in the assessment of disease at all its clinical phases, including staging, restaging after definitive therapy, evaluation of therapy response, and prognostication. Positron emission tomography with a number of biologically targeted radiotracers has been demonstrated to have potential diagnostic and...
متن کاملSynthesis and Application of New Gadolinium-Porphyrins as Potential MR Imaging Contrast Agents for Cancer Detection in Nude Mice
Two new potential magnetic resonance imaging contrast agents, Gd-hematoporphyrin (Gd-H) and Gd-tetra-carboranylmethoxyphenyl-porphyrin (Gd TCP), were synthesized and applied to nude mice with human melanoma (MM 138) xenografts. These agents showed a high relaxivity because of their greater potential to coordinate water molecules. The reduction of T1 relaxation times of 16 and 21% was observed i...
متن کاملCorrelation of MR perfusion imaging and vessel tortuosity parameters in assessment of intracranial neoplasms.
Advances in noninvasive imaging techniques such as magnetic resonance perfusion imaging have been found useful in grading cerebral neoplasms and have potential for significant clinical benefit. The purpose of this study was to determine the correlation between tumor vessel tortuosity as measured from vessels extracted from magnetic resonance angiograms (MRA) and perfusion parameters of cerebral...
متن کاملAssessment of radiation-induced cancer risk to patients undergoing computed tomography angiography scans
Background: Computed tomography angiography (CTA) scan is a suitable imaging technique to evaluate the blood vessels. However, one major disadvantage is the potential risk of cancer related to ionizing radiation exposure during the procedures. The aim of this investigation was to estimate the risk of exposure induced cancer death (REID) values for some common computed tomography angiography (CT...
متن کاملInvestigation of acoustic properties of silica coated gold nanoparticle as contrast agent for Ultrasonography
Interoduction: Ultrasound images have often low contrast due to small differences in acoustic impedance between different tissues. Air or gas microbubbles that surrounded by membrane are most of the contrast agents in ultrasound imaging. Problems such as instability in sound pressure and inability in penetrating from the blood vessel into body tissues limited the use of microbubbles into the in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012